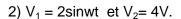
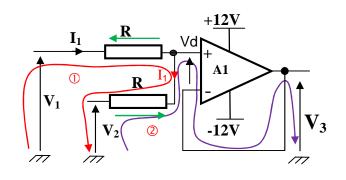
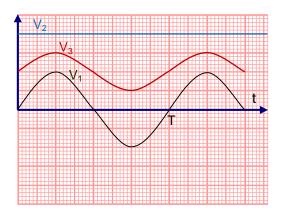
Exercice N°1:

1)Le montage fonctionne en régime linéaire (Vd=0)

La maille N°1 donne :

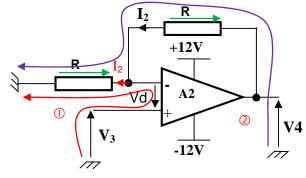

 V_1 - RI_1 - RI_1 - V_2 =0; $2RI_1 = V_1$ - V_2 ;


La maille N°2 donne :


$$V_2$$
+ RI_1 - V_3 =0 ; V_3 = V_2 + RI_1 or RI_1 = $\frac{V_1 - V_2}{2}$

$$V_3 = V_2 + \frac{V_1 - V_2}{2}$$
 $V_3 = \frac{V_1 + V_2}{2}$

$$V_3 = \frac{V_1 + V_2}{2}$$


Exercice N°2:

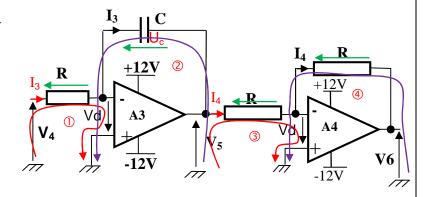
1) L'A.L.I 2 fonctionne en régime linéaire (Vd=0)

La maille N°1 donne : V_3 - RI_2 =0 ; V_3 = RI_2

La maille N°2 donne : V_4 - RI_2 - RI_2 =0 ; V_4 =2 RI_2 ; V_4 =2 V_3

2) C'est un amplificateur non inverseur

Exercice N°3:


1) L'A.L.I 3 fonctionne en régime linéaire (Vd=0)

La maille N°1 donne : V_4 - $RI_3 = 0$; $I_3 = \frac{V_4}{R}$

Rappel

$$i_{c} = C \frac{du_{c}(t)}{dt}$$

$$u_{c} = \frac{1}{C} i_{c}.dt$$

La maille N°2 donne : $V_5 + U_5 = -U_5$ or $U_5 = -U_5$ or $U_5 = -\frac{1}{C} \int I_3 dt$; $V_5 = -\frac{1}{C} \int I_3 dt$; $V_5 = -\frac{1}{C} \int \frac{V_4}{R} dt$

 $V_s = -\frac{1}{RC} \int V_4 dt$

2) C'est un intégrateur

3) L'A.L.14 fonctionne en régime linéaire (Vd=0)

La maille N°3 donne : V_5 - RI_4 =0 ; V_5 = RI_4

La maille N°4 donne : V_6 + RI_4 = 0 ; V_6 =- RI_4 V_6 =- V_5

4) C'est un inverseur

Exercice N°4:

- 1°) Régime linéaire car la sortie est reliée à l'entrée inverseuse
- 2°) D'après la loi de diviseur de tension on a :

$$\mathbf{e}^{\scriptscriptstyle +} = \frac{R1}{2R1}U\mathbf{c} = \frac{U\mathbf{c}}{2}$$

3°) La maille N°1 donne :

$$U4 - R2 I_2 - e^- = 0$$
; $R2 I_2 = U4 - e^-$; $I_2 = \frac{U4 - e^-}{R2}$

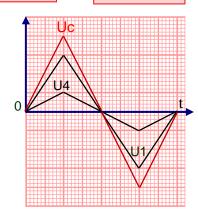
La maille N°2 donne :

$$e^{-}$$
 - R3 I_2 - U1=0; e^{-} = R3 I_2 + U1

$$e^{-} = R3 \frac{U4 - e^{-}}{R2} + U1$$
 ; $e^{-}(1 + \frac{R3}{R2}) = R3 \frac{U4}{R2} + U1$

$$e^{-}(\frac{R2+R3}{R2}) = R3\frac{U4}{R2} + U1$$
; $e^{-} = R3\frac{U4}{R2} \times \frac{R2}{R2+R3} + \frac{R2}{R2+R3}U1$; $e^{-} = \frac{R3}{R2+R3}U4 + \frac{R2}{R2+R3}U1$

$$e^{-} = \frac{R3}{R2 + R3}U4 + \frac{R2}{R2 + R3}U1$$


L'A.L.I est en régime linéaire Vd=0 or $Vd=e^+-e^-$; $e^+=e^-$

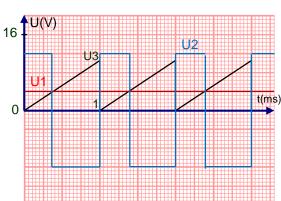
$$\frac{R3}{R2+R3}U4 + \frac{R2}{R2+R3}U1 = \frac{Uc}{2} \Rightarrow \frac{R2}{R2+R3}U1 = \frac{Uc}{2} - \frac{R3}{R2+R3}U4 \Rightarrow U1 = \frac{R2+R3}{R2} \times \frac{Uc}{2} - \frac{R2+R3}{R2} \times \frac{R3}{R2+R3}U4$$

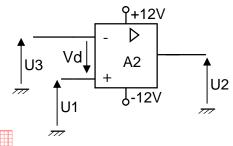
$$U1 = \frac{R2 + R3}{2R2}Uc - \frac{R3}{R2}U4$$

5°) On donne les graphes de U1 et U4 représenter le graphe de Uc pour R2 = R3.

$$U1 = \frac{R2 + R2}{2R2}Uc - \frac{R2}{R2}U4$$

$$U1 = Uc - U4$$


Prof : Borchani hichem et Hammami mourad


Exercice N°5:

- 1°) Régime saturé car la sortie n'est pas reliée à l'entrée inverseuse (boucle ouverte)
- 2°) C'est un comparateur simple seuil
- 3°) Si U1 > U3 alors U2 = 12V

Si U1 < U3 alors U2 = -12V

4°)

Exercice N°6

1) C'est un dérivateur

2)

La maille N°1 donne :
$$V_e$$
- U_c =0 ; V_e = U_c
La maille N°2 donne : V_s +RI=0 ; V_s = -RI or $I = C \frac{dU_c}{dt} = C \frac{dV_c}{dt}$

Donc

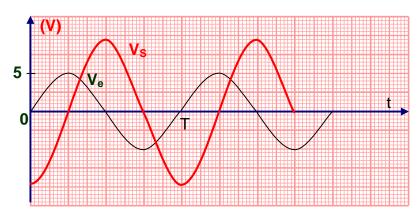
$$Vs = -RC \frac{dVe}{dt}$$

3) Le signal d'entrée Ve est un signal alternatif sinusoïdal d'expression Ve = $5 \sin \omega t$ a)

Rappel: Formules Trigonométriques

$$\cos = \sin(\frac{\pi}{2})$$
 $\cos = \sin(\frac{\pi}{2})$

$$\frac{d(\sin t)}{dt} = \cos t \quad \frac{d(\cos t)}{dt} = -\sin t \quad \int (\cos t)dt = \frac{1}{-\sin t} \sin t \quad \int (\sin t)dt = -\frac{1}{-\cos t} \cos t$$


Ve =
$$5 \sin \omega t$$
 $Vs = -RC \frac{dVe}{dt}$; $\frac{dVe}{dt} = 5 \cos t$

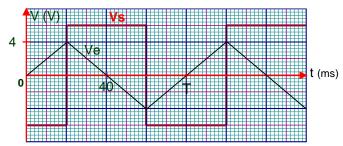
Vs = -5RC
$$\omega$$
cos ω t or ω = 2 f; Vs = -10 RCf sin ($\frac{1}{2}$ - ω t) ; Vs = 10 RCf sin (ω t - $\frac{1}{2}$)

$$R = 15K\Omega$$
 et $C = 2\mu f$ $f = 10Hz$.

Vs = 10 ×2.10⁻⁶×15.10³×10 sin (
$$\omega$$
t - $\frac{1}{2}$) = 3 sin (ω t - $\frac{1}{2}$)

b) Représenter l'oscillogramme de Vs sur le repère suivant.

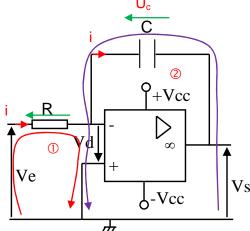
- c) La tension Vs est sinusoïdale en quadrature arrière par rapport à la tension d'entrée
- 4) Le signal d'entrée Ve, étant alternatif triangulaire d'amplitude 4V et de période 80ms,


a)

Pour $t \in [0,T/4]$ Ve = axt avec a est la pente du segment de droite $a = \frac{4}{20.10^{-3}} = 200t$

Ve = 200t

$$Vs = -RC \frac{dVe}{dt} = -200RC$$
; $Vs = -200 \times 15.10^3 \times 2.10^{-6} = -6V$


b)

c) La tension Vs est une tension alternative rectangulaire.

ExerciceN°7

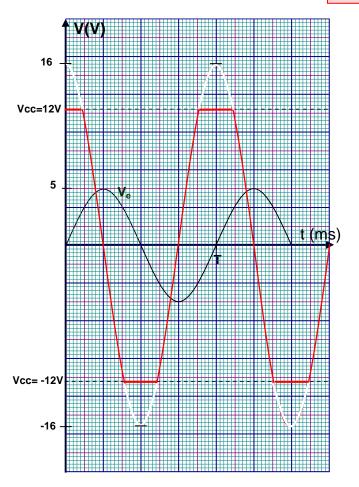
1) C'est un intégrateur

2) L'A.L.I fonctionne en régime linéaire (Vd=0)

La maille N°1 donne : V_e - Ri =0 ; V_e = Ri ; $i = \frac{Ve}{R}$

La maille N°2 donne : V_s + U_c =0 ; V_s = - U_c or $U_c = \frac{1}{C} \int idt$

$$Vs = -\frac{1}{C}\int \frac{Ve}{R}dt$$


$$Vs = -\frac{1}{C} \int \frac{Ve}{R} dt$$
 ; $Vs = -\frac{1}{RC} \int Ve dt$

3) Le signal d'entrée est sinusoïdal d'expression Ve = 5 sin ωt ; f= 50 Hz; R= 1K Ω ; C=1uF La tension de polarisation est +Vcc=12V.

3-1
$$Vs = -\frac{1}{RC}\int Vedt$$
; $\int Vedt = \int 5\sin t = -\frac{5}{2}\cos 5t = -\frac{5}{2}\sin(t + \frac{1}{2})$

$$Vs = \frac{5}{RC} \sin(t + \frac{\pi}{2}) \qquad Vs = \frac{5}{10^3 \times 10^{-6} \times 2 \times 50} \sin(314t + \frac{\pi}{2}) \qquad Vs = 16\sin(314t + \frac{\pi}{2})$$

3-2

Exercice N°8:

- 1°) Régime saturé car la sortie est reliée à l'entrée non inverseuse
- 2°) Puisque le régime est saturé $U9 = \pm Vcc = \pm 12V$

3°)

Puisque le régime de fonctionnement de L'A.L.I est saturé Vd 0 U8 La maille N°1 donne : U8- R8i –Vd =0 ; (1)

La maille N°2 donne U9+ R9i –Vd =0; (2)

De l'équation (1) $R8i = U8 - Vd \Rightarrow i = \frac{U8 - Vd}{R8}$

On remplace i par son expression dans l'équation (2)

$$U9 + R9 \frac{U8 - Vd}{R8} - Vd = 0$$
 ; $Vd(1 + \frac{R9}{R8}) = U9 + \frac{R9}{R8}U8$; $Vd(\frac{R8 + R9}{R8}) = U9 + \frac{R9}{R8}U8$

$$Vd = \frac{R8}{R8 + R9}U9 + \frac{R8}{R8 + R9}\frac{R9}{R8}U8$$
; $Vd = \frac{R8}{R8 + R9}U9 + \frac{R9}{R8 + R9}U8$

Prof: Borchani hichem et Hammami mourad

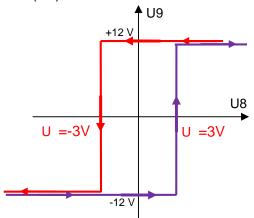
R9

4°)

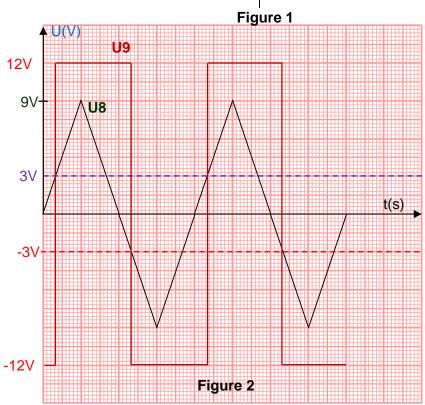
Pour que U9 =-12V il faut que Vd<0

$$Vd = \frac{R8}{R8 + R9}U9 + \frac{R9}{R8 + R9}U8 < 0 \Rightarrow -12R8 + R9U8 < 0 \Rightarrow \frac{12R8}{R9}$$

5°) Pour que U9 =+12V il faut que Vd>0

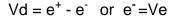

$$U8 > -\frac{12R8}{R9}$$

6°) Pour R8= 2 K Ω , R9= 8K Ω

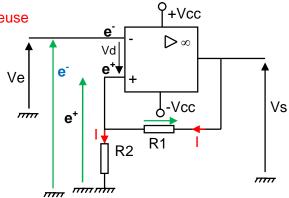

Tension de seuil par valeur croissante de U9 : U =
$$\frac{12R8}{R9} = \frac{12 \times 2.10^3}{8.10^3} = 3V$$

Tension de seuil par valeur décroissante de U9 :
$$U = -\frac{12 \times 2.10^3}{8.10^3} = -3V$$

7°) Caractéristique de transfert U9 = f(U8)



Exercice N°9


- 1°) Régime saturé car la sortie est reliée à l'entrée non inverseuse
- 2°) D'après la loi de diviseur de tension on a :

$$e^+ = \frac{R2}{R2 + R1} Vs$$

3°) Déduire l'expression de Vd en fonction de Ve et Vs

$$Vd = \frac{R2}{R2 + R1}Vs - Ve$$

4°) Seuils de basculements V⁺ (seuil positif) et V⁻ (seuil négatif) en fonction de Vcc

Seuil de basculement

$$\frac{R2}{R2 + R1} Vs - Ve = 0$$
 $Ve = \frac{R2}{R2 + R1} Vs$ $Vs = \pm Vcc$ $V + = \frac{R2}{R2 + R1} Vcc$

$$V + = \frac{R2}{R2 + R1}Vcc$$

$$V - = -\frac{R2}{R2 + R1}Vcc$$

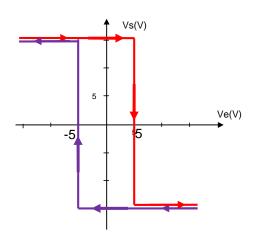
5°) Condition sur Ve pour que Vs = -Vcc

Pourque Vs= -Vcc il faut que Vd<0
$$-\frac{R2}{R2+R1}Vcc-Ve<0 \Rightarrow Ve>-\frac{R2}{R2+R1}Vcc$$

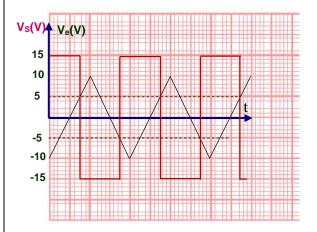
6°) Condition sur Ve pour que Vs = +Vcc

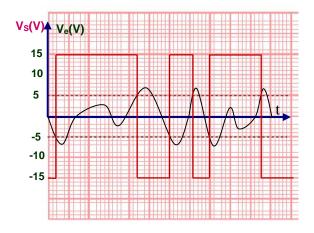
Pourque Vs= +Vcc il faut que Vd>0

$$\frac{R2}{R2+R1}Vcc-Ve>0 \Rightarrow Ve<\frac{R2}{R2+R1}Vcc$$


7°) Sachant que Vcc = 15V,R1 = 2R2

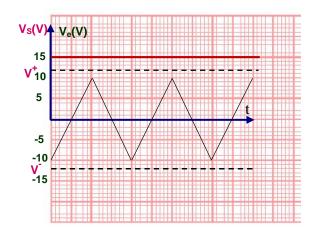
$$V^{+} = \frac{R2}{R2 + 2R2} Vcc = \frac{R2}{3R2} Vcc = \frac{15}{3} = 5V$$
 $V^{+} = 5V$

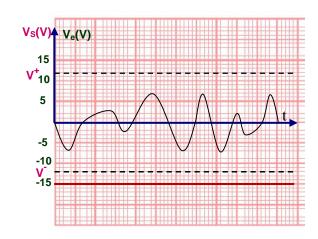

$$V^{+} = 5V$$


$$V^- = -5V$$

8°) Caractéristique de transfert de Vs en fonction de Ve

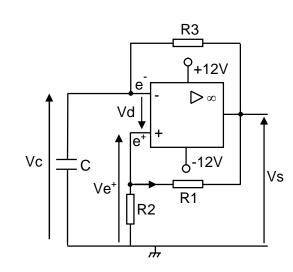
9°)




10°) Si R2=4R1 Vcc = 15V,

$$V^{+} = \frac{4R1}{4R1 + R1} Vcc = \frac{4R1}{5R1} 15 = \frac{60}{5} = 12V$$

$$V^- = -12V$$


Exercice N°10:

Soit le montage suivant où l'ALI est supposé idéal :

1°) Expression de Ve⁺ en fonction de Vs, R1 et R2.

D'après la loi de diviseur de tension

$$Ve^{+} = \frac{R2}{R1 + R2} \times Vs$$

2°) Les expressions des tensions seuils $V_{\text{\scriptsize H}}$ et $V_{\text{\scriptsize L}}$:

Le montage est constitué d'un comparateur inverseur à double seuils et d'un circuit capacitif (RC) Les tensions de seuils sont obtenues lorsque la tension Vd = 0

$$Vd = Ve^{+} - Vc = \frac{R2}{R1 + R2} \times Vs - Vc$$

$$Vd = Ve^{+} - Vc = \frac{R2}{R1 + R2} \times Vs - Vc \qquad Vd = 0 \Rightarrow \qquad \frac{R2}{R1 + R2} \times Vs - Vc = 0 \Rightarrow \quad Vc = \frac{R2}{R1 + R2} \times Vs$$

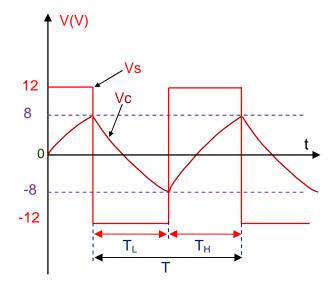
or
$$Vs = \pm Vcc$$

$$V_H = \frac{R2}{R1 + R2} \times Vcc$$

$$V_L = -\frac{R2}{R1 + R2} \times Vcc$$

3°) Les valeurs de V_H et V_L si R1= 10 K Ω ; R2= 20 K Ω .

$$V_{H} = \frac{R2}{R1 + R2} \times Vcc = \frac{20}{30} \times 12 = 8V$$
 $V_{H} = 8V$


$$V_{L} = -\frac{R2}{R1 + R2} \times Vcc = -\frac{20}{30} \times 12 = -8V$$

$$V_L = -8V$$

4°) Expression de la période « T » du signal de sortie Vs :

$$T_{H} = R_{3}.C.ln(1 + 2.\frac{R_{2}}{R_{1}})$$
 $T = 2T_{H} \Rightarrow T = 2R_{3}.C.ln(1 + 2.\frac{R_{2}}{R_{1}})$

5°) Courbe de la tension de sortie Vs.

